direct product, metabelian, nilpotent (class 2), monomial, 3-elementary
Aliases: C2×C92⋊4C3, C92⋊17C6, C9⋊C9⋊9C6, (C9×C18)⋊4C3, C32⋊C9.20C6, C6.9(C9○He3), (C3×C6).27C33, C33.11(C3×C6), (C3×C18).10C32, C32.31(C32×C6), (C32×C6).10C32, (C2×C9⋊C9)⋊6C3, (C3×C9).27(C3×C6), C3.9(C2×C9○He3), (C2×C32⋊C9).11C3, SmallGroup(486,203)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C92⋊4C3
G = < a,b,c,d | a2=b9=c9=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=bc6, dcd-1=b6c4 >
Subgroups: 180 in 100 conjugacy classes, 66 normal (10 characteristic)
C1, C2, C3, C3, C6, C6, C9, C32, C32, C18, C3×C6, C3×C6, C3×C9, C33, C3×C18, C32×C6, C92, C32⋊C9, C9⋊C9, C9×C18, C2×C32⋊C9, C2×C9⋊C9, C92⋊4C3, C2×C92⋊4C3
Quotients: C1, C2, C3, C6, C32, C3×C6, C33, C32×C6, C9○He3, C2×C9○He3, C92⋊4C3, C2×C92⋊4C3
(1 100)(2 101)(3 102)(4 103)(5 104)(6 105)(7 106)(8 107)(9 108)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 139)(20 140)(21 141)(22 142)(23 143)(24 144)(25 136)(26 137)(27 138)(28 83)(29 84)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 82)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 110)(56 111)(57 112)(58 113)(59 114)(60 115)(61 116)(62 117)(63 109)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(1 22 44 10 113 88 77 70 53)(2 23 45 11 114 89 78 71 54)(3 24 37 12 115 90 79 72 46)(4 25 38 13 116 82 80 64 47)(5 26 39 14 117 83 81 65 48)(6 27 40 15 109 84 73 66 49)(7 19 41 16 110 85 74 67 50)(8 20 42 17 111 86 75 68 51)(9 21 43 18 112 87 76 69 52)(28 162 146 129 104 137 120 95 62)(29 154 147 130 105 138 121 96 63)(30 155 148 131 106 139 122 97 55)(31 156 149 132 107 140 123 98 56)(32 157 150 133 108 141 124 99 57)(33 158 151 134 100 142 125 91 58)(34 159 152 135 101 143 126 92 59)(35 160 153 127 102 144 118 93 60)(36 161 145 128 103 136 119 94 61)
(2 11 78)(3 79 12)(5 14 81)(6 73 15)(8 17 75)(9 76 18)(19 70 116)(20 23 26)(21 115 66)(22 64 110)(24 109 69)(25 67 113)(27 112 72)(28 126 132)(29 35 32)(30 128 125)(31 120 135)(33 131 119)(34 123 129)(36 134 122)(37 43 40)(38 88 50)(39 54 86)(41 82 53)(42 48 89)(44 85 47)(45 51 83)(46 52 49)(55 142 145)(56 59 62)(57 153 138)(58 136 148)(60 147 141)(61 139 151)(63 150 144)(65 68 71)(84 90 87)(92 159 101)(93 102 160)(95 162 104)(96 105 154)(98 156 107)(99 108 157)(111 114 117)(118 124 121)(127 133 130)(137 140 143)(146 149 152)
G:=sub<Sym(162)| (1,100)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,139)(20,140)(21,141)(22,142)(23,143)(24,144)(25,136)(26,137)(27,138)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,82)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,116)(62,117)(63,109)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,22,44,10,113,88,77,70,53)(2,23,45,11,114,89,78,71,54)(3,24,37,12,115,90,79,72,46)(4,25,38,13,116,82,80,64,47)(5,26,39,14,117,83,81,65,48)(6,27,40,15,109,84,73,66,49)(7,19,41,16,110,85,74,67,50)(8,20,42,17,111,86,75,68,51)(9,21,43,18,112,87,76,69,52)(28,162,146,129,104,137,120,95,62)(29,154,147,130,105,138,121,96,63)(30,155,148,131,106,139,122,97,55)(31,156,149,132,107,140,123,98,56)(32,157,150,133,108,141,124,99,57)(33,158,151,134,100,142,125,91,58)(34,159,152,135,101,143,126,92,59)(35,160,153,127,102,144,118,93,60)(36,161,145,128,103,136,119,94,61), (2,11,78)(3,79,12)(5,14,81)(6,73,15)(8,17,75)(9,76,18)(19,70,116)(20,23,26)(21,115,66)(22,64,110)(24,109,69)(25,67,113)(27,112,72)(28,126,132)(29,35,32)(30,128,125)(31,120,135)(33,131,119)(34,123,129)(36,134,122)(37,43,40)(38,88,50)(39,54,86)(41,82,53)(42,48,89)(44,85,47)(45,51,83)(46,52,49)(55,142,145)(56,59,62)(57,153,138)(58,136,148)(60,147,141)(61,139,151)(63,150,144)(65,68,71)(84,90,87)(92,159,101)(93,102,160)(95,162,104)(96,105,154)(98,156,107)(99,108,157)(111,114,117)(118,124,121)(127,133,130)(137,140,143)(146,149,152)>;
G:=Group( (1,100)(2,101)(3,102)(4,103)(5,104)(6,105)(7,106)(8,107)(9,108)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,139)(20,140)(21,141)(22,142)(23,143)(24,144)(25,136)(26,137)(27,138)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,82)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,116)(62,117)(63,109)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,22,44,10,113,88,77,70,53)(2,23,45,11,114,89,78,71,54)(3,24,37,12,115,90,79,72,46)(4,25,38,13,116,82,80,64,47)(5,26,39,14,117,83,81,65,48)(6,27,40,15,109,84,73,66,49)(7,19,41,16,110,85,74,67,50)(8,20,42,17,111,86,75,68,51)(9,21,43,18,112,87,76,69,52)(28,162,146,129,104,137,120,95,62)(29,154,147,130,105,138,121,96,63)(30,155,148,131,106,139,122,97,55)(31,156,149,132,107,140,123,98,56)(32,157,150,133,108,141,124,99,57)(33,158,151,134,100,142,125,91,58)(34,159,152,135,101,143,126,92,59)(35,160,153,127,102,144,118,93,60)(36,161,145,128,103,136,119,94,61), (2,11,78)(3,79,12)(5,14,81)(6,73,15)(8,17,75)(9,76,18)(19,70,116)(20,23,26)(21,115,66)(22,64,110)(24,109,69)(25,67,113)(27,112,72)(28,126,132)(29,35,32)(30,128,125)(31,120,135)(33,131,119)(34,123,129)(36,134,122)(37,43,40)(38,88,50)(39,54,86)(41,82,53)(42,48,89)(44,85,47)(45,51,83)(46,52,49)(55,142,145)(56,59,62)(57,153,138)(58,136,148)(60,147,141)(61,139,151)(63,150,144)(65,68,71)(84,90,87)(92,159,101)(93,102,160)(95,162,104)(96,105,154)(98,156,107)(99,108,157)(111,114,117)(118,124,121)(127,133,130)(137,140,143)(146,149,152) );
G=PermutationGroup([[(1,100),(2,101),(3,102),(4,103),(5,104),(6,105),(7,106),(8,107),(9,108),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,139),(20,140),(21,141),(22,142),(23,143),(24,144),(25,136),(26,137),(27,138),(28,83),(29,84),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,82),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,110),(56,111),(57,112),(58,113),(59,114),(60,115),(61,116),(62,117),(63,109),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(1,22,44,10,113,88,77,70,53),(2,23,45,11,114,89,78,71,54),(3,24,37,12,115,90,79,72,46),(4,25,38,13,116,82,80,64,47),(5,26,39,14,117,83,81,65,48),(6,27,40,15,109,84,73,66,49),(7,19,41,16,110,85,74,67,50),(8,20,42,17,111,86,75,68,51),(9,21,43,18,112,87,76,69,52),(28,162,146,129,104,137,120,95,62),(29,154,147,130,105,138,121,96,63),(30,155,148,131,106,139,122,97,55),(31,156,149,132,107,140,123,98,56),(32,157,150,133,108,141,124,99,57),(33,158,151,134,100,142,125,91,58),(34,159,152,135,101,143,126,92,59),(35,160,153,127,102,144,118,93,60),(36,161,145,128,103,136,119,94,61)], [(2,11,78),(3,79,12),(5,14,81),(6,73,15),(8,17,75),(9,76,18),(19,70,116),(20,23,26),(21,115,66),(22,64,110),(24,109,69),(25,67,113),(27,112,72),(28,126,132),(29,35,32),(30,128,125),(31,120,135),(33,131,119),(34,123,129),(36,134,122),(37,43,40),(38,88,50),(39,54,86),(41,82,53),(42,48,89),(44,85,47),(45,51,83),(46,52,49),(55,142,145),(56,59,62),(57,153,138),(58,136,148),(60,147,141),(61,139,151),(63,150,144),(65,68,71),(84,90,87),(92,159,101),(93,102,160),(95,162,104),(96,105,154),(98,156,107),(99,108,157),(111,114,117),(118,124,121),(127,133,130),(137,140,143),(146,149,152)]])
102 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | 3J | 6A | ··· | 6H | 6I | 6J | 9A | ··· | 9X | 9Y | ··· | 9AN | 18A | ··· | 18X | 18Y | ··· | 18AN |
order | 1 | 2 | 3 | ··· | 3 | 3 | 3 | 6 | ··· | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 9 | 9 | 1 | ··· | 1 | 9 | 9 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 |
102 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 |
type | + | + | ||||||||
image | C1 | C2 | C3 | C3 | C3 | C6 | C6 | C6 | C9○He3 | C2×C9○He3 |
kernel | C2×C92⋊4C3 | C92⋊4C3 | C9×C18 | C2×C32⋊C9 | C2×C9⋊C9 | C92 | C32⋊C9 | C9⋊C9 | C6 | C3 |
# reps | 1 | 1 | 2 | 8 | 16 | 2 | 8 | 16 | 24 | 24 |
Matrix representation of C2×C92⋊4C3 ►in GL6(𝔽19)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 6 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 7 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[0,0,17,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,6,0,0],[0,0,11,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,7,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,11] >;
C2×C92⋊4C3 in GAP, Magma, Sage, TeX
C_2\times C_9^2\rtimes_4C_3
% in TeX
G:=Group("C2xC9^2:4C3");
// GroupNames label
G:=SmallGroup(486,203);
// by ID
G=gap.SmallGroup(486,203);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,1148,4113,93]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^9=c^9=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b*c^6,d*c*d^-1=b^6*c^4>;
// generators/relations